Mechanistic Details and Reactivity Descriptors in Oxidation and Acid Catalysis of Methanol

نویسندگان

  • Prashant Deshlahra
  • Robert T. Carr
  • Song-Hai Chai
  • Enrique Iglesia
چکیده

Acid and redox reaction rates of CH3OH-O2 mixtures on polyoxometalate (POM) clusters, together with isotopic, spectroscopic, and theoretical assessments of catalyst properties and reaction pathways, were used to define rigorous descriptors of reactivity and to probe the compositional effects for oxidative dehydrogenation (ODH) and dehydration reactions. P-MAS NMR, transmission electron microscopy and titrations of protons with di-tert-butylpyridine during catalysis showed that POM clusters retained their Keggin structure upon dispersion on SiO2 and after use in CH3OH reactions. The effects of CH3OH and O2 pressures and of Dsubstitution on ODH rates show that C−H activation in molecularly adsorbed CH3OH is the sole kinetically relevant step and leads to reduced centers as intermediates present at low coverages; their concentrations, measured from UV−vis spectra obtained during catalysis, are consistent with the effects of CH3OH/O2 ratios predicted from the elementary steps proposed. First-order ODH rate constants depend strongly on the addenda atoms (Mo vs W) but weakly on the central atom (P vs Si) in POM clusters, because C−H activation steps inject electrons into the lowest unoccupied molecular orbitals (LUMO) of the clusters, which are the d-orbitals at Mo and W centers. H-atom addition energies (HAE) at O-atoms in POM clusters represent the relevant theoretical probe of the LUMO energies and of ODH reactivity. The calculated energies of ODH transition states at each O-atom depend linearly on their HAE values with slopes near unity, as predicted for late transition states in which electron transfer and C−H cleavage are essentially complete. HAE values averaged over all accessible O-atoms in POM clusters provide the appropriate reactivity descriptor for oxides whose known structures allow accurate HAE calculations. CH3OH dehydration proceeds via parallel pathways mediated by late carbenium-ion transition states; effects of composition on dehydration reactivity reflect changes in charge reorganizations and electrostatic forces that stabilize protons at Brønsted acid sites.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic, mechanistic and thermodynamic investigations on Iridium (III) catalyzed oxidation of D-Mannitol by N-chloro-p-toluenesulfonamide in perchloric acid medium

The present paper deals with the kinetics and mechanism of homogeneously Ir(III) chloride catalyzed oxidation of D-mannitol by chloramine-T [CAT] in perchloric acid medium in the temperature range of 30 to 45 0C. The reaction is carried out in the presence of mercuric acetate as a scavenger for chloride ion. The experimental results show first order kinetics with respect to the oxidant [CAT] an...

متن کامل

Ionic and covalent stabilization of intermediates and transition states in catalysis by solid acids.

Reactivity descriptors describe catalyst properties that determine the stability of kinetically relevant transition states and adsorbed intermediates. Theoretical descriptors, such as deprotonation energies (DPE), rigorously account for Brønsted acid strength for catalytic solids with known structure. Here, mechanistic interpretations of methanol dehydration turnover rates are used to assess ho...

متن کامل

Electro-Catalytic Oxidation of Methanol at Ni(OH)2 Nanoparticles-Poly (o-Anisidine)/Triton X-100 Film onto Phosphotungstic Acid-Modified Carbon Paste Electrode

In this work, Phosphotungstic Acid modified Carbon Paste Electrode (PWA-CPE) is used as a substrate for electro-polymerization of o-Anisidine (OA). Also, Triton X-100 (TX-100) surfactant is used as an additive for electrochemical polymerization of OA onto the PWA-CPE, which is investigated as a novel matrix for dispersion of nickel species. The prepared electrodes are characterized by...

متن کامل

Bifunctional anode catalysts for direct methanol fuel cells

Using the binding energy of OH* and CO* on close-packed surfaces as reactivity descriptors, we screen bulk and surface alloy catalysts for methanol electro-oxidation activity. Using these two descriptors, we illustrate that a good methanol electro-oxidation catalyst must have three key properties: (1) the ability to activate methanol, (2) the ability to activate water, and (3) the ability to re...

متن کامل

Oxidative desulfurization of light fuel oil by using hydrogen peroxide in the presence of acetic acid catalyst

Hydrogen peroxide as an oxidant agent was used for desulfurization of a petroleum hydrocarbon fraction (C10-C22) with boiling range of 175-375 ℃, (light fuel oil) in the presence of acetic acid as catalyst. The oxidation was performed in an ultrasonic bath. It is found that increasing the amount of hydrogen peroxide lead to increase the oxidation rate and so desulfurizatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014